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The three-phonon scattering relaxation rates and their temperature exponents have
been analysed in the frame of Guthrie’s classification of the phonon-phonon scattering
events as class I and class U events and as a result of this, a new expression 75,5 =
= By + Bu1e *D) g)T™IP + By + Byue "D gw)T™ID for the three
phonon scattering relaxation rates has been proposed for the first time to calculate the
lattice thermal conductivity of a sample. Using the expression proposed above, the
lattice thermal conductivity of Ge has been analysed in the temperature range 2 —
1000K and result obtained shows a very good agreement with the experimental data.
The percentage contributions due to three-phonon normal and umklapp processes are
also reported. The role of four phonon processes is also included at high temperatures.
To estimate an approximate value of the scattering strength and the phonon conductiv-
ity, the analytical expression is also obtained in the frame of the expression proposed
above for 73;}.

The phonon-phonon scattering relaxation rate has been studied by a number of
workers [1 —13] due to its very important role in the lattice thermal conductivity,
and it has been found that the three-phonon scattering relaxation rate involves a
complicated dependence on the phonon frequency and temperature due to the com-
plicated structure of the Brillouin Zone and the strong temperature dependence of
the distribution function. As a result of this, even at present we lack an exact ana-
Iytical expression for it. However, for practical purposes, it has been expressed by
simple relations [1—13] as a function of the phonon frequency and temperature.
It is also found that the phonon-phonon scattering processes can be divided
into two groups; normal processes (N processes) in which momentum is con-
served, and umklapp processes (U processes) in which momentum is not conserved.
The roles of N and U processes have been studied by a number of worker{14 —22]
by calculating the phonon conductivities of different samples.

Recently, Guthrie [7, 8] studied the three-phonon scattering relaxation rate by
dividing phonon—phonon scattering events into two classes: class I events, in which
the carrier phonon is annihilated by combination and class II events, in which the
carrier phonon is annihilated by splitting. Following Guthrie, the three-phonon
scattering relaxation rate 7, can be expressed as

Tyoh = Tapn (class I) + 73, (class I1) 1))
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264 DUBEY: ANALYSIS OF LATTICE THERMAL CONDUCTIVITY

He also pointed out that the three-phonon scattering relaxation rate due to each
class of events could be expressed as

Topn ¢ W) AT) @

where f(T) = T™D and m(T) is a continuous function of temperature 7. Verma ef
al. [9, 10, 23 —25] were the first who attempted to incorporate the Guthrie expres-
sion to calculate the phonon conductivity of some insulators, by expressing the
three-phonon scattering relaxation rate as

Tk = Bg(w) ToD 0T ®

Terms are explained in the following section. However they could not include the
contribution due to the three-phonon N processes in the calculation of the lattice
thermal conductivity. At the same time, the expression used for m(7) includes an
empirical factor (1 + 6/aT).

Following Verma et al. considering the Guthrie [7] classification of phonon-
—phonon scattering events and including the contributions due to three-phonon N
and U processes, a new expression for 73, is proposed as

Toph = (Bn,1 + Bu,1 €7%T) gw) T™ 1D + (By,yr + By, ™) g(w) T™ 11D

)
Terms are explained in the following section. No distinction is made in the value
of m(T) for the three-phonon N and U processes, due to the fact that Guthrie
obtained the same value of the temperature exponent m(T) for both processes. The
value of the temperature exponent m(7T) used in the present work differs from that
used in the work of Verma et al. in that in the present analysis it does not include
any empirical relation.

To see the applicability of the expression proposed, the phonon conductivity
of Ge has been calculated in the entire temperature range 2 — 1000 K as an example
within the framework of 73, given in Eq. (4). The values of m,(T") and my(T) are
also calculated, to permit a comparative study with the temperature exponent
m(T) used in the Sharma—Dubey-Verma (SDV) model [9, 10], as well as with the
upper limit of m(T) obtained by Guthrie. The percentage contributions of the three-
phonon N and U processes towards the three-phonon scattering relaxation rate
have been studied for both transverse and longitudinal phonons, and also for class
I and for class IT events. The percentage contribution of 73, towards the combined
scattering relaxation rate has also been studied for both transverse and longitudi-
nal phonons. To examine the relative contributions of transverse and longitudinal
phonons towards the total phonon conductivity, the percentage contributions due
to transverse and longitudinal phonons have also been studied in the entire temper-
ature range 2— 1000 K.

Analytical expressions have been obtained to estimate approximate values of
the scattering strength and the lattice thermal conductivity. A comparative study
is made between the results of the present analysis and the earlier reports of other
workers.
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DUBEY: ANALYSIS OF LATTICE THERMAL CONDUCTIVITY 265

Three-phonon scattering relaxation rate and its temperature exponents

Tt is well established that the three-phonon scattering processes dominate over
other scattering processes at high temperatures. At the same time, they are not
negligibly small at low temperatures. They play a very important role even in the
vicinity of conductivity maxima. However, due to the complicated structure of the
Brillouin Zone and the strong temperature dependence of the distribution function,
even at present we lack an exact expression for it. The phonon-phonon scattering
procecces, N and U processes, have been studied widely, their scattering re-
laxation rates being expressed by simple relations as functions of the phonon fre-
quency and temperature (see Table 1). The lattice thermal conductivities of several

Table 1

The scattering relaxation rates. In these expressions, B’s are constants and are known as the

scattering strengths of the respective processes, L is the Casimir length of the crystal, 4 is the

point-defect scattering strength, v is the average phonon velocity, ¢, is the Zone boundary
of the first Brillouin Zone, « is a constant and 6 is the Debye temperature

Scattering processes Relaxation rates
i — ———e - - N —
Crystal boundary [39] 15! = v/L
Impurities [4] Th = Awt

Three-phonon processes ;0
Normal processes (N processes)

Tioh (1] 1 \
Transverse Ty = BT
Longitudinal TEE _ B,T_w2T3] at low temperatures
Transverse 5 = BowT .
Li:;ngsitu dsinal TLEI _ B{w“T] at high temperatures
Umklapp processes (U processes) |
KTJ—DL'U | 1 B.w?Te— 0T

lemens [3 Ty = BpwTle™ .
Klemens %2% [ TGU, _ Bzw I jow temperatures
Holland [6] (for transverse) ( 5! = Brgw?¥/sin h(hw/kgT) mix —  Dnux

Lzg! =0 — 3Gma

Callaway [5] gl = Byw'T?
Klemens [2] A 75} = Byw?T at high temperatures
Four-phonon processes’ Toh = Bw*T*

samples have been calculated [26 —35] in the framework of the combined scattering
relaxation rates (see Table 2), at both low and high temperatures, using the expres-
sions reported in Table 1.

The combined scattering relaxation rate due to the three-phonon scattering pro-
cesses can be expressed by Eq. (1). According to Guthrie, the phonon—phonon scat-
tering relaxation rate has the form of

Tipn @ 9(W) ™M
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266 DUBEY: ANALYSIS OF LATTICE THERMAL CONDUCTIVITY

Table 2

The combined scattering relaxation rates. In these expressions, wp, is the Debye frequency,

6 is the Debye temperature, w; and w, are the transverse phonon frequencies at 1/, ¢, and

Gmax> TESDECtIVElY, W, and w, are the same for longitudinal phonons, ¢, is the Zone boundary

of the first Brillouin Zone, o is a constant depending on the dispersion curve and m is the
temperature exponent

Author and reference Combined scattering relaxation rates Fr::rl:;:cy
Callaway [5] 7! = 15t + ! + (B, + By)wiT3 0— wp
Holland [6] o= 13" + 5! + BawT? 0— w,

1o h =1t + ! + Bruw¥sin h(hw/kgT) Wy — W,
oL = 15" + ' + BuwT? 0— w,
Joshiand
Verma [11] toh =gt + 5 + BewT™ 0— w,
ToL= 75" + ! + BowT™ 0— w,
(m =1, 2,3 or 4 depending on temperature range)
SDV model
[9, 10, 23] Toh =13t 4+ ! + Braw TRT, IP g—o=T 0— wy
1oL = 15t + TRt + B wATOT, 1D 0T
+ By, w*T™T, 10T 0— w,
Dubey and
Misho [12] ok = 13! + 153! + (Biw + Bry e NHwT™ 0— w,
T;lL — TEI + Tnftl + (BLN + BLU e—e/aT)szm 0— Wy
(m = 1, 2, 3 or 4 for transverse phonons depending on
temperature range, and m = 1, 2 or 3 for longitudinal
phonons depending on temperature range.
Byn = Byye™®*T atroom temperature, i.e. at T = 300K,
where X = Tor L)
Present work b= 1g' + 5! + Byny + Bru, 17 DwTT, TP 0— wy
ot =15+ 1! + Buw,y + Bry, 17 DwTOL, 1P
+ (Bix,u + Bry,m e Hw2T™L, I

where g(w) is the frequency dependence of the three-phonon scattering relaxation
rate; g(w) = w for transverse phonons, and g(w) = w? for longitudinal phonons,
which are the same as obtained by Herring [1]. Guthrie suggested that the temper-
ature exponent m(7) is a continuous function of temperature 7. He also pointed
out that the temperature dependence of the three-phonon scattering relaxation
rates (T35, « 7* for transverse phonons and T55n @ T° for longitudinal phonons)
obtained by Herring is valid at low temperatures only, and should not be used at
high temperatures. At the same time, it is interesting to note that Guthrie could
not give any suggestion for the exact value of m(T) which should be used in the
calculation of the lattice thermal conductivity, except that he obtained the maxi-
mum and minimum values of m(T): For class I events,

(T max] = Xonax [2€*™> — )™ + 1.0] — 1.0 %)
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[1(T)]in = 1.0 ©)

and for class II events, it is given by
(T ] = 1.0 o
[(T) Jin = Xepan(€ ™ — 1.0) 71 05 nax ®

where Xp. = AWg 1.1/kg T, & is the Planck constant divided by 2m, ky is the
Boltzmann constant, and w,,, is the phonon frequency at the boundary of the
first Brillouin Zone. Suffixes 7" and L represent transverse and longitudinal pho-
nons, respectively. Thus, it is clear that m(7) is different for transverse and lon-
gitudinal phonons, due to their frequencies at the Zone boundary. Guthrie also
pointed out that the numerical value of [m(T)],,.. for class I events should not
exceed 4 for transverse phonons and 3 for longitudinal phonons. The maximum
value of m(T) at any temperature can be clarified with the help of Table 3, where
the Guthrie upper limit of m(7T') is reported for Ge, Si, GaAs and InSb.

Thus, there is still large uncertainty in assigning an exact value of m(7T'). Joshi and
Verma [11] used the maximum value of m(7’) in the calculation of the lattice ther-
mal conductivity of Si, as reported in Table 3. Thus, they could not use a contin-
uous value of m(T). At the same time, they considered the contribution of the
three-phonon N processes only (see Table 1 in ref. [11]). In the lack of an exact
value of m(T) and to minimize the uncertainty, it is more realistic to use an average
value of its maximum and minimum value in place of its extremum value. Thus,
the m(T) used in the present analysis for class I events can be expressed as

MYT) = X (€% — 1) 7 + 0.5, €)
while for class II events it takes the form

m(T) = 0.5x,,, (€™ — 1) e"¥max 4 0.5 (10

Table 3

Guthrie’s limits for the temperature exponent m for Ge, Si, GaAs and InSb.?

Assumption of | Assumption I

—1 m
w T* L ofw2Te o=l grm =l grm ton @l
Material | |, relation _relation where m < 4 | wherem < 3 where
| invalid f ¢ invalid for T > £ T > m < 2if
T> T > K K T>
K i K K
Ge 20 | 26 90 115 167
Si 43 55 149 190 282
GaAs 20 26 85 108 159
InSb 13 16.5 54 69 103

a — see Table 2 of ref. [7]
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268 DUBEY: ANALYSIS OF LATTICE THERMAL CONDUCTIVITY

As stated earlier, the phonon-phonon scattering processes can be grouped into
two groups. The N processes are those in which momentum is conserved, and the
scattering relaxation rate due to such processes can be expressed as

T&’_plh,N = By g(w) T @an

where By is the scattering strength of the three-phonon normal processes, and
suffix N is used to represent N processes. The other group of processes are the
three-phonon U processes in which momentum is not conserved. According to
Klemens [2, 3], the scattering relaxation rate due to these can be expressed as

Ts_plh, v = BugW)T™® ¢~ 0T (12)

where By is the three-phonon U process scattering strength, 8 is the Debye tem-
perature of the specimen under study, « is a constant depending on the crystal
structure of the sample, and suffix U represents U processes. Thus, the scattering
relaxation rates due to class I and class II events can be expressed as

Ta‘_plh,l = (By,1 + Buy,1€ ~0lTy g(w) T™ 1P 13)
T = Bn,n + Buue 1) gw) ™1™ 14

The same frequency dependence is assigned to N and U processes, due to the fact
that it depends only on the polarization branches. The same value of m(T) is used
for both processes, since Guthrie [7] obtained the same value of m(T) for both N
and U processes.

The classification of Guthrie of class I and class 1I events leads to the participa-
tion of transverse phonons alone in class 1 events, and the participation of longitu-
dinal phonons in both class I and class 11 events. As a result the three-phonon scat-
tering relaxation rate 7 r due to transverse phonons takes the form

Ton, T = Bt + Bru,t e " TywTmT, 1M (15)

because the contribution due to class IT events is not possible for transverse pho-
nons. Similarly, for longitudinal phonons, the three-phonon scattering relaxation
rate t;,, ; can be expressed as

Tooh, L = Bun,1 + Bry,re "W TTL, 1D + (Bix,ix + Bry,me” W T™L, 1D

(16)
Thus, the expression for 5, used in the present analysis is based on the division
into class I and class II events, also N and U processes.

Besides the three-phonon scattering processes, four-phonon scattering processes
too play an important role in the study of the lattice thermal conductivity at high
temperatures. According to Pomeranchuk [36—38], the four-phonon scattering
relaxation rate can be expressed as

Toh = BywiT? 17
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where By is the four-phonon scattering strength. The lattice thermal conductivities
of several samples have been calculated [20, 27, 31] by using the above expression
for 15, and it has been found to give a good response to the phonon conductivity
at high temperatures.

It has been shown [39—41] that the lattice thermal conductivity of an insulator
at very low temperatures can be explained very well on the basis of boundary scat-
tering alone. According to Casimir [39], the boundary scattering relaxation rate
has the form 13 = v/L, where v is the average phonon velocity and L is the charac-
teristic length associated with the crystal under study. Since the boundary scattering
is important for low-frequency phonons only, it is immaterial whether v is a phase
or a group velocity, because for low-frequency phonons phase and group veloci-
ties are almost equal and it is sufficient to use the low-frequency value for v. The
characteristic length L is determined by the crystal geometry and is assumed to be
the same for all phonons. It is found that the theoretical value of L does not usually
agree with the experimentally measured value of the phonon conductivity. It is
further found that L = F times the length of the crystal, where F is an adjustable
parameter, usually of the order of unity.

The scatterings due to isotopes, point-defects, etc. are most important scattering
mechanisms at temperatures near the conductivity maxima. At such temperatures,
high-frequency phonons are not excited to a large extent and it is reasonably good
to use the Klemens [2] expression for the point-defect scattering relaxation rate
1,8 as 15" = Aw?, which has been obtained for low-frequency phonons, were 4 is
the point-defect scattering strength. A careful analysis of the Klemens cxpression
shows that A depends on the polarization branches and it should be different for
longitudinal and transverse phonons. Longitudinal phonons contribute only a little
[42] towards the total phonon conductivity as compared to transverse phonons.
Thus, it is sufficient to use A4 for transverse phonons, as was done by earlier workers
too. The expression for A, as obtained by Klemens, can be expressed as

A = (Vo/dnd®) 2, (1 — my/m)? (18)
where V, is the atomic volume, m; is the mass of the ith species of the atom, f,
is the fractional concentration of the ith species, 77 is the average atomic mass of
the host lattice atom, and v is the average phonon velocity.

Thus, the combined scattering relaxation rates for transverse phonons, 7,07
and for longitudinal phonons, 7;}, used in the present analysis are given by

Tg,lT = 15" + Aw' + Brni + Bry e " NwT™T, 1D + Byw?T*  (19)
1oh = 15" + AW + (Bung + Brue W TTL 1D +

+ (Bt + Broue W T™L, 1D + By w?T?. (20)
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Phonon conductivity integral and analytical expressions

To have an expression for the lattice thermal conductivity, one needs to solve the
Boltzmann equation which can be expressed as [5]

dN

oN
( o7 =0 o))

o

J——C'VT

A

where N is the distribution function, ¢ is the group velocity,

ON
a7 represents the

rate of change of the distribution function due to collisions and

dN| .

——| is the same
dr

due to the temperature gradient / T. Considering the special role of three-phonon

ON
N processes, Callaway [5] expressed ¥ as

(6NJ NJ) —N Ny—N
= +

¥ 22

™ Tr

where Ty and 7y are the scattering relaxation times due to momentum conserving
and momentum non-conserving processes, respectively, N, is the Planck distri-
bution function and N(A)is the displaced distribution due to three-phonon N pro-
cesses. If one solves Eq. (21) in terms of Eq. (22) to have an expression for the lat-
tice thermal conductivity K, it is found that K can be expressed as the sum of two
components. The first part is due to the combined scattering relaxation rate and
consists of a single integral (in the approach of Callaway), whereas the second part
is of a complicated form and is known as the correction term [5] (4K) due to the
three-phonon N processes. In the absence of N processes, it reduces to zero.

However, Callaway [5, 43] and others [44—48] have studied the contribution
of the correction term (4K) due to the three-phonon N processes, and have found
that this is very small as compared to the contribution due to the first part. Solid
He [43], LiF [49] and solid HD [50] are exceptions to this. It has further been re-
ported that the contribution of 4K towards the total phonon conductivity is negli-
gibly small [51—53] in the generalized Callaway integral [54, 55] at low and at
high temperatures. Therefore, the contribution due to 4K has been neglected in the
present analysis.

Considering the spherical symmetry of the Brillouin Zone (i.e. of three polariza-
tion branches, two are transverse and one is longitudinal) and the fact that each
phonon contributes separately towards the total phonon conductivity, the contri-
bution due to each mode of phonons can be expressed as

K; = (1/67%) | 70,05 (hwlky T%) ™5T (M1 — 1)~2 4% dg (23)

where the integration is performed over the first Brillouin Zone, v,; is the group
velocity corresponding to the polarization branches under study, g is the phonon
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wave vector corresponding to the phonon frequency w, and suffix 7 is used to distin-
guish polarization branches.

Callaway and also Holland [6] expressed ¢ in terms of w inside the conductivity
integral in the Debye approximation, i.e. ¢ = w/v, which is valid for low-frequency
phonons only. Following Verma et al. [56], in the present analysis a better relation

g =) (1 + rwh) 2%

has been used to change ¢ into w inside the conductivity integral in Eq. [23],
where r is a constant and depends on the dispersion curve of the sample under
study. The constant  can be calculated with the help of the dispersion curve. It is
interesting to state here that the velocity of the phonons is not the same in the
entire range of the first Brillouin Zone. It has a larger value for low-frequency pho-
nons as compared to high-frequency phonons. To be more exact, the entire first
Brillouin Zone has been divided into two parts: 0 to 1/2g,..., and 1/2¢,..« t0 ¢iaxs
where g,,,,, is the phonon wave vector corresponding to the Zone boundary of the
first Brillouin Zone. At the same time, it should also be noted that the dispersion
constant r is calculated separately for these two regions. Thus, the total lattice ther-
mal conductivity can be expressed as

K=Ky + K, 25)

where K1 and Kj are the contributions due to transverse and longitudinal phonons,
respectively. These are given by

6,/T
Kt = (Clvm) S Tc,Txlie)‘(ex — D721 + RxH® (1 + 3RxY) " dx

0,/T
+ (Clors) [ terx'ei(e — D73+ RoxD*(L + 3R hdx (26)

0,/T

0,/T
Ky =(Cl2oy) | touxter(e — D721+ Ryx»(1 + 3R;x%) " tdx
0
0./T
+(Cwy) [ oropxtere — D7+ Ryx)*(1 + 3R, x*) 1 dx (27)

8,/T

where C = (ky/37%) (kg TIR)?, R; = rikgT/h)*; i=1,2,3 and 4:
Tox = (12%)7"%  X=Tand L; 0;=(wlky); i=1,2,3 and 4;
vy, and vy, are transverse phonon velocities in the range 0—1/2 ¢y and 1/2 Gpax
respectively, v;; and v,_, are the same for longitudinal phonons, w; and w, are

transverse phonon frequencies corresponding to wave vectors 1/2 ¢, Gmaxs T€-
spectively, w; and w, are the same for longitudinal phonons, r; and r, are the dis-
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persion constants for transverse phonons in the region 0—1/2 g, and 1/2 g .. —
— Gmax Tespectively, r; and r, are the same for longitudinal phonons, and 7% and
7,1 are the combined scattering relaxation rates due to transverse and longitudi-
nal phonons, respectively, as given in Eqs (19) and (20). The above conductivity
integrals are evaluated to find analytical expressions for the lattice thermal conduc-
tivitv at high and at low temperatures.

At high temperatures, the upper limit of all the four integrals, 0,/T (i = 1, 2, 3
and 4), is a small quantity due to the large value of T, which results in x < 1,
and x® e*(e* — 1)~ 2 reduces to unity. Thus, the conductivity integrals can be eval-
uated analytically as below:

(A) If 735> Tipn > Ty

Ky = (Clombp) [X*2 — (R/HX* — (SRY/6)X°® — (D/bp) {X*/5 — (R X" —

— (5R3}/9) X} = (bax/br) {X*3 — (RS X® — SRYDX"}] +

+ C/(3Ry012b7) [1/3 10 (02/0,) + (SRy/6) Y2 + (RIYAY* + (Ry/6)Y ™2 —

— (D/by) {Y*9 + (Ref3)Y® + (RYTY" — (Ro/3)Y} — (bur/br) {¥/3 +

+ (5Ry/9) Y% + REY® + (Ry/3) Y1} 28)
Ky = ClQouby) [Xy — DJ3b) X1 — (bur/bl) X1l + ClQuiab) [Y1 — (RY3) Y] —

— R}Y} — (D/b) {Yi3 — (Ry5)YT — GRYDYT} — (bu/by) {¥1 —

— (Ry/3)Y3 — RiY{}] (29)

(B) If 13 > Toph > ot

Kr = Cl(oribyp) [X — (R3)X° — RIX® —(D/byy) {X%3 — (R/5)X° —

— SRYNXT} — (brfbay) {In (X) — (R/2)X* — SR/ X*}] +

+ C/(BRav1abyr) [(GR2/3)Y + (RYI)Y: —(Ry/NY 2 — Y73 —

— (D/byr) {Y/3 + (SR Y? + (RIS Y’ — (RyfIY '} —

— (bi/bur) {(SRe/3)In (6y/6)) + (RY)Y* + (R,/12)Y™* — Y 76}] (30)
Ky = ClQupbg)[Xy(1 — by/bgy) — (D3bp) X311 + ClQur2bu)] {Y: =

— (Ry/3)Y3 — RIY} (I — by/buy) — (D/buy) { Y13 —

— (R/5) Y} - GRYNY{}] (€)Y
where

X =0T, X;=0,T, Y"=[0,/T) — (6,/T)"]; n=12173, ...

YY = [(04T)" — (65/T)"]; n=1273, ...
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D = A(kgT/h)’, byr = Bur(ks/h)*T*, buy, = By (k s/h) T,
by = (Brn, 1 + Bry, 1€ %) (kg/k) T T, 1D
by = (Bun, 1 + Bry, 1€ %T) (kp/h)*T™ L, 102

+ (Bun,u + Bru,p e ") (kp/R)*T™ L, 11D+

At low temperatures, the contributions of the second integrals in Eqs (26) and
(27) are very small as compared to the contributions due to the first integrals and
can be ignored. At the same time, due to the small value of T, the upper limits
0,/T and 8,/T of the first integral in Eqs (26) and (27) are large enough. Thus, the
factor (¢* — 1) can be approximated to e*. With these approximations, one has the
following analytical expression for the lattice thermal conductivity:

© If w350 > 15! > 15"
Kr = Cllonbp) (Z° — R Z° - 5RIZ7) — (D[by) (Z° — R Z° — 5RIZ") —

- (t3'/b0) (Z* = R\ Z' — SRIZ®) — (bur/by) (2" — R, Z° — 5R}ZP)]
(32)

Ky = C/Quuiby) [ZF — (Dfb) Zt — (vg'/bL) ZY — (byn/br) Z3] (33)
where

Zt =1 —nle X2(X%mn— D!+ X3 Y(n—2)1 4+ ... + X3+ Xp21 —= 1)
Z8 =1 —nle X3XYn — D!+ XY — 2D+ ...+ XH3 4+ X210 — 1)
X, = 6,/T and X, = 04T

(D) If 15" » ' > 13k
Ky = 24C 15/(vp)[l — Stgby — 168014 D) (34)
K = 24C15/(v;)[1 — 30155, — 1680D 15] 35

It should be noted that in obtaining Egs (34) and (35), the upper limits of the
first integrals in  Eqgs (26) and (27) are taken as infinity due to the very low value of
temperature 7. It should also be noted that the analytical expressions are obtained
in terms of the numerical values of the constants for Ge.

Phonon conductivity of Ge

To see the applicability of the expression proposed for 73, through Egs (15)
and (16), the lattice thermal conductivity of Ge has been calculated in the entire
temperature range 2— 1000 K via Eqs (26) and (27) as an example. The dispersion
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constants r are calculated with the help of the equation

r = (1/wHgo/w — 1) (36)

and using the experimental dispersion curve (57) of Ge. The values of these con-
stants are found to be the same as reported by Verma et al. (56). The values ob-
tained are reported in Table 4. As far as the Casimir length of the crystal and the
point-defect scattering strength are concerned, these two constants do not need
any adjustment for Ge, due to the fact that they have been studied by several work-
ers and the values obtained are nearly the same. In the present analysis, the values
of L and A are taken from the earlier report of Holland [6]. The temperature ex-
ponents my (T), my (T') and m, ;,(T) for the three-phonon scattering relaxation
rate have been calculated in the entire temperature range 2— 1000 K with the help
of Eqs (9) and (10), and the values obtained are listed in Tables 5— 7, respectively.
To permit a comparative study of the temperature exponent m(7T) with that used
by Verma et al. [9] and also with the upper limit found by Guthrie, values of
m(T) have also been calculated by the different methods and are given in Tables
5—7. The variations of the various m(7) values with temperature are shown in
Figs 1-3.

The difficulties lie in estimating the three-phonon N and U process scattering
strengths. This can be done with the analytical expressions reported in the preced-
ing section. At low temperatures, T3, N > rgp}.‘,u. Thus rough values of Bry p,
By n,1 and Bpy g at 15 K have been estimated with the analytical expressions in
Eqgs (32) and (33), ignoring the contribution due to the three-phonon U processes.
Similarly, at high temperatures T35 v > T3ph ~ and one can neglect 73, v at these
temperatures. By 1, Bpy,; and By, gy at 400 K have been estimated with the ana-
lytical expressions in Eqs (28) and (29). From the approximate values of these
constants, better values have been obtained by numerical integration of the con-

Table 4

The constants and parameters used in the calculation of the lattice
thermal conductivity of Ge in the temperature range 2— 1000 K

vy = 3.55 10° cm/sec rq =0

vy; = 4.92 10° cm/sec Iy = 1.13 10~ sec?

vry = 1.30 10° cm/sec 73! =196 10%sec™!

vy, = 2.46 10° cm/sec A =24 107*sec?

6; =9K By, =10 1072 deg™™

6, = 118K Bry, 1= 1.95 10~¢ deg—™

6, = 208K B 1= 12 10~2sec deg™™
f, =319K By ;=10 107 secdeg™
0 =376K Byng =20 10~ secdeg™
a =20 By = 5.0 10"8sec deg™™
rp = 2.95 10~% sec? Byr =10 1022 secdeg™?
ry = 8.28 10~% sec? By =10 102secdeg™?
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Table 5

The temperature exponent mr,(T) used for class I events
for transverse phonons. m(SDV represents the value used
in the SDV model and m(Guthrie) represents the upper
limit of the temperature exponent obtained by Guthrie

Temperature J I |

T, K [ m(Present) ' m(SDV) m(Guthrie)
}

1000 | 100116 | 1.02610 1.00232
900 | 1.00143 1.02932 1.00286
800 i 1.00181 1.03339 ' 1.00362
700 1.00237 1.03868 1.00473
600 1.00322 1.04583 1.00644
500 ©1.00464 1.05600 1.00927
400 L 1.00724 1.07154 1.01448
300 1.0186 1.09816 1.02572
200 1.02884 1.15392 1.05768
100 1.11343 1.34312 1.22685

90 1.13931 1.38994 1.27862
80 1.17505 1.45094 1.35010
70 1.22630 1.53334 | 1.45259
60 1.30328 1.64988 1.60656
50 1.42506 1.82490 1.85213
40 1.63793 210974 | 2.27586
30 2.04521 2.63833  3.09042
20 t2.96621 3.74792 ¢ 4.0
10 ¢ 4.0 4.0 4.0

8 . 4.0 4.0 4.0

6 4.0 4.0 4.0

4 4.0 4.0 4.0

2 4.0 40 .40

\‘\.

v
\\ ‘/'l (T gutnrue
\‘ 'X/[mU)]SDV

Ty
|

\\\
A SR

\ \.

-~

! 4 10 40 100 400 000
Temperature K

Fig. 1. The temperature exponent m (T) for class I events for transverse phonons for Ge,
—— present work; ——-— SDV model; - . - . - upper limit obtained by Guthrie
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1 4 10 40 100 400 1000
Temperature, K

Fig. 2. The temperature exponent my_ (T) for class I events for longitudinal phonons for Ge,
present work; ——— SDV model; - . - . - upper limit obtained by Guthrie

Table 6

The temperature exponent my, (T) used for class I events
for longitudinal phonons. m(SDV) represents the value used
in the SDV model and m(Guthrie) represents the upper
limit of the temperature exponent obtained by Guthrie

Tem%“;‘“'e’ ) m(Present) J m(SDV) m(Guthric)
[

1000 1.00847 1.03340 1.01693
900 1.01045 1.03833 1.02089
800 1.01322 1.04479 1.02643
700 1.01725 1.05356 1.03449
600 1.02345 1.06605 1.04689
500 1.03369 1.08505 1.06738
400 1.05245 1.11675 1.10489
300 1.09249 1.17779 1.18499
200 1.20352 1.32860 1.40705
100 1.73198 1.96167 2.46396

90 1.87765 2.12828 2.75529
80 2.06910 2.34499 3.0
70 2.32689 2.63393 3.0
60 2.68456 3.0 3.0
50 3.0 3.0 3.0
40 3.0 3.0 3.0
30 3.0 3.0 3.0
20 3.0 3.0 3.0
10 3.0 3.0 3.0
8 | 30 3.0 3.0
6 3.0 3.0 3.0
4 3.0 3.0 30
2 3.0 3.0 3.0
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Fig. 3. The temperature exponent my (T) for class II events for longitudinal phonons for Ge,
—— present work; —— — SDV model; - . - . - upper limit obtained by Guthrie

Table 7

The temperature exponent my (7') used for class II events
for longitudinal phonons. m(SDV) represents the value used
in the SDV model and m(Guthrie) represents the upper
limit of the temperature exponent obtained by Guthrie

Temperature,
T, K

1000
900
800
700
600
500
400
300
200
100

90
80
70
60
50

\
I m(Present)
!
I

0.99789
0.99739
0.99670
0.99570
0.99416
0.99162
0.98699
0.97720
0.95068
0.83754
0.81016
0.77665
0.73587
0.68717
0.63156
0.57398
0.52610
0.50274
0.50

0.50

.050

.050

.050

m(SDV)

0.99791
0.99742
0.99674
0.99575
0.99423
0.99172
0.98716
0.97751
0.95144
0.84097
0.81449
0.78226
0.74341
0.69776
0.64737
0.59974
0.57407
0.61476
0.91414
1.0

1.0

1.0

1.0

m(Guthrie)

1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
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A
K
2 100
0
> Ks
5
= 40~
o
2 K.
x
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046
o1 | . | ! | >
" 4 10 40 100 400 1000

Temperature , K

Fig. 4. The total lattice thermal conductivity of Ge in the temperature range 2— 1000 K. K
and K are the separate contributions due to transverse and longitudinal phonons, respectively.
Solid line: calculated values, circles: experimental points

Table 8

The percentage contributions of the three-phonon scattering relaxation rate T3, v towards the

combined scattering relaxation rate 77 % due to transverse phonons due to class I events in the

absence of the four-phonon scattering processes for four different values of the phonon
frequency. wy, represents the maximum frequency of the transverse phonons

_ 1 _1
% T, T % T3ph, T % T3ph, T

for w = 7/, wmax

% s
° , T
Temperature, T, K 3on forw = w

= Wmax

for w = 1/4 wmax for w = 3/4 wmax

1000 ; 76.24 \ 86.52 | 90.59 92.77
900 | 75.89 | 86.30 ( 90.43 92.64
800 75.46 86.01 90.22 ‘ 92.48
700 74.89 | 85.65 89.94 92.27
600 ‘ 74.14 w 85.15 89.59 91.98
500 [ 73.08 | 84.45 89.07 91.57
400 1 71.49 | 83.38 88.27 90.94
300 ‘ 68.84 | 81.55 | 86.89 | 89.84
200 ‘ 63.62 | 77.77 \ 83.99 | 87.49
100 ] 49.71 66.41 74.78 79.81

90 1, 47.10 [ 64.04 72.26 78.08
80 | 44.11 } 61.21 70.30 75.94
70 ; 40.66 | 57.81 | 67.27 73.26
60 | 36.69 ! 53.68 63.49 69.86
50 [ 32.14 48.65 ' 58.70 65.45
40 s 26.88 42.37 | 52.45 59.52
30 | 20.34 33.80 ‘ 43.36 50.50
20 ] 10.36 18.78 25.73 31.53
10 ‘ 0.20 0.40 0.58 0.74
8 | 0.10 ‘ 0.20 | 0.28 0.34
6 | 0.04 T 0.08 ( 0.11 0.11
4 ‘ 0.01 0.02 ‘ 0.02 0.02
2 ‘i 0 0 1 0 0
i i
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Fig. 5. The percentage contributions of transverse and longitudinal phonons towards the total
lattice thermal conductivity of Ge. Solid line: % Kr; dotted line: % K.

Table 9

The percentage contributions of the three-phonon scattering relaxation rate 734, | towards

the combined scattering relaxation rate 7.} due to longitudinal phonons due to the combined

effect of class II events in the absence of four-phonon processes for four different values of the
phonon frequency. w,,, represents the maximum frequency of longitudinal phonons

Temperature, 7, K % 13_9%1’11 7 173iplh.L I % t3_p§1»L | % t;pllmL
for w = 1/4 wmax for w = 1/2 wmax | for w = 3/4 wmax for w = wgax
|

1000 | 99.94 99.74 99.43 98.99
900 | 99.93 99.71 99.35 98.85
800 ‘ 99.92 99.66 ! 99,25 ‘ 98.67
700 | 99.90 99.60 99.11 ‘ 98.42
600 1 99.88 99.51 98.90 | 98.06
500 99.84 ‘ 99.36 98.58 | 97.50
400 3 99.77 J 99.11 98.01 i 96.52
300 ! 99.63 98.54 96.78 \ 94.41
200 j 99.14 96.66 ‘ 92.80 / 87.88
100 | 93.92 79.53 63.34 49.28
90 91.84 73.89 55.72 | 41.45
80 i 89.63 68.50 49.15 . 35.22
70 1 89.06 67.20 47.66 33.88
60 ‘ 91.99 74.29 56.23 41.95
50 ‘ 92.40 75.35 57.61 43.33
40 72.62 40.01 ‘ 22.87 14.30
30 : 25.58 7.96 3.70 2.12
20 ‘ 4,13 1.07 0.48 0.27
10 ( 0.69 0.17 0.08 0.04
8 , 0.44 0.11 : 0.05 0.02

6 ’ 0.28 0.07 ! 0.03 0.02

4 0.18 0.04 J 0.02 0.01

2 0.11 0.03 | 0.01 0
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ductivity integrals in Eqs (26) and (27) at 15 K (near the conductivity maxima)
and at 300 K (near room temperature). The four-phonon scattering strengths
Byy and By, are estimated with the analytical expressions in Eqs (30) and (31),
which are further corrected at 500 K by numerical integration of the conductivity
integrals. The values obtained for these contents are listed in Table 4. From all the
constants is Table 4 the lattice thermal conductivity of Ge has been obtained by

.

Percentage contributions
S
f

*6\l processes

[0}

oot L |
1 4 10 40

100
Temperature K

Fig. 6. The percentage contributions of 73}y and 75}, y towards 5L, ¢ for class I events for
transverse phonons for Ge in the temperature range 2— 1000 K. Solid line: percentage contri-
bution due to 73}, y; dotted line: percentage contribution due to 75} &

calculating the separate contributions due to transverse and longitudinal phonons
in the entire temperature range 2— 1000 K; the result is shown in Fig. 4. Each
contribution has been estimated by numerical integration of the conductivity in-
tegrals with an HP-9830A mini computer. The separate percentage contributions
of transverse and longitudinal phonons have also been studied in the entire temper-
ature range of study and the results are shown in Fig. 5.

To study the roles of three-phonon N and U processes, the percentage contri-
butions of 133}, n and 15}, y towards t5,; have been calculated for class I events for
transverse phonons, and for class I and class II events for longitudinal phonons.
The results are shown in Figs 6 — 8. The percentage contributions of tgplhyT (class I)

J. Thermal Anal. 19, 1980
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for transverse phonons and 7  (class I + class II) for longitudinal phonons
towards the combined scattering relaxation rate of the respective modes 72} and
7.1 are listed in Tables 8 and 9. The percentage contributions of 73}, 1 (class I)
and rgplh, L (class IT) towards 777 have also been calculated and are reported in
Tables 10 and 11.

A
0100 = == ==~
o
5
o
i
<]
v
@
o
g
€
@ 10—
&

\ %N processes
\
- \
\
\
\
\
\
N
~
~
~
\\\
% U processes ~—~
on—
col— 1 | I .
4 10 40 100 400 1000

Temperature K

Fig. 7. The percentage contributions of 754y and 75, towards 734, 1,1 for class 1 events
for longitudinal phonons for Ge in the temperature range 2— 1000 K. Solid line: percentage
contribution due to T3h u; dotted line: percentage contribution due to Tihn

A comparative study of the present analysis with previous analysis

In this section, a comparative study between the present analysis and the pre-
vious analyses of other workers has been made. From Tables 1 and 2 it is clear
that Callaway used t5,xw?T? in the entire temperaturerange 2— 100 K, although
this is valid at low temperatures only. Callaway did not make any distinction be-
tween transverse and longitudinal phonons and his entire analysis is valid for
longitudinal phonons, except for the average phonon velocity. Due to this, Calla-
way could not get good agreement at high temperature (see Fig. 2 of ref. (6)).
Holland [6] and Verma et al. [56] calculated the phonon conductivity of Ge in the
temperature range 2— 1000 K using two-mode conduction of phonons. However,

J. Thermal Anal. 19, 1980
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from Tables 1 and 2 it is clear that they used 73,5 & wT™* for transverse phonons
and 13,  « w*T*for longitudinal phonons in the entire temperature range of study,
which are valid for low-frequency phonons and at low temperature only. At the
same time, in calculating the contribution due to transverse phonons, they could
not include 73,5 y in the range 0—1/2 gy, and T35 n in the range 1/2 gpax — Jmax:
They totally ignored t3,, y in calculating the contribution due to longitudinal

9 100k ==~ == -~
hed
35
2
T
0
O
@
o
)
C
S o
P
a
v
\
A
\
\,
\% N processes
1 \
\
\
\
\
\
\
\
\
% U processes \\
ol AN
\\
\\‘
oo ‘ L

i | -
10 W 100 400 1000
Temperature, K

Fig. 8. The percentage contributions of 75}, and 75} y towards 755 1 for class IT events
for longitudinal phonons for Ge in the temperature range 2— 1000 K. Solid line: percentage
contribution due to T3}, u; dotted line: percentage contribution due to 73}

phonons. The expression t3, ¢ « w?/sin A(hw/kT) which they used for transverse
phonons gives a T-dependence for the three-phonon scattering relaxation rate
which is valid at high temperatures only. Tiwari and Agrawal [58] also calculated
the phonon conducitivity of Ge in the temperature range 2— 1000 K by using the
expressions T3, ¢ « wI™ and T3, 1, @ w?T™, which reveals that they employed the
same temperature exponent value for both modes, i.e. they used the same tempera-
ture-dependence for transverse and longitudinal phonons, though these should be
different. It is clear from Table 2 that they considered only the contribution due to
the three-phonon N processes in their analysis (for details, see Table 1 of ref. (58)).
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However, they used a better temperature dependence for 3, than the previous
workers.

The first attempt to incorporate the Guthrie expression for m(T) for 73, in the
calculation of the lattice thermal conductivity was made by Verma et al., who
proposed the new Sharma—Dubey—Verma (SDV) model [9, 10,23 —25]. Inthe SDV
model, a continuous temperature exponent is used for the first time for the three-
-phonon scattering relaxation rate. However, the expression for m(T) in the SDV
model (see Egs (5), (6) and (22) of ref. [9]) contains an empirical factor (1 + 0/aT).
At the same time, a careful analysis of Figs 1—3 and Tables 5—7 shows that at
high temperatures the value of m(7") used in the SDV model is larger than the upper
Guthrie limit. (This can also be seen in Figs 2—4 of ref. [9].) From Tables 1 and
2 (and also from Eqs (20) and (21) of ref. [9]), it is clear that the expression used
for 73, in the SDV model does not include the contribution due to the three-pho-
non N processes. As a result of this, they could not get good agreement at high
temperatures (see Fig. 1 of ref. [9]).

Table 10

The percentage contributions of the three-phonon scattering relaxation rate 735} 1 ; towards

the combined scattering relaxation rate 7} due to longitudinal phonons due to the class I

events alone in the absence of four-phonon processes for four different values of the phonon
frequency. wpy,x represents the maximum frequency of longitudinal phonons

T % Tiph L1 % t3ph. L1 % Tiph L1 % Tiph L1
emperature, 7, K :
for w = 1/4 wmax for w == 1/2 wmax for w = 3/4 wmax | for w = wpax
|
1000 0.21 0.21 0.21 0.21
900 0.22 0.22 0.22 0.22
800 0.22 0.22 0.22 0.22
700 0.23 0.23 0.23 0.23
600 0.24 0.24 0.24 . 0.24
500 0.26 0.26 0.26 : 0.25
400 0.30 0.30 0.29 ‘ 0.28
300 0.38 i 0.38 0.37 0.36
200 0.75 ! 0.73 0.70 0.67
100 10.33 8.73 6.97 . 5.42
90 18.10 | 14.56 10.98 ' 8.17
80 32.84 ‘ 25.18 18.07 ‘ 12.95
70 56.61 1 42.71 30.30 21.53
60 80.84 | 65.29 49,41 36.86
59 88.35 72.05 i 55.09 41.43
40 68.51 37.75 i 21.58 13.49
30 23.64 \ 7.36 3142 1.96
20 3.73 } 0.97 0.43 | 0.21
10 0.45 : 0.11 0.05 0.03
8 0.23 : 0.06 0.03 0.01
6 | 0.11 : 0.02 0.01 0
4 0.03 1 0 0 0
2 ! 0 0‘ 0 0 ‘ 0
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Thus, for the first time, the Guthrie expression for the temperature exponent
m(T) for 73, has been incorporated in the calculation of the lattice thermal con-
ductivity without any empirical factor. At the same time, the contributions due to
three-phonon N and U processes are also included for both of the modes in the
entire temperature range 2— 10000 K. The contributions due to 735, x and 5 u
have also been included in the entire range of the first Brillouin Zone, i.e. both N
and U processes have been considered in the same conductivity integral. The
expression proposed for the three-phonon scattering relaxation rate is based on
the division into class I and class II events, and also N and U processes. The
role of four-phonon processes also is considered in the present analysis.

Table 11

The percentage contribution of the three-phonon scattering relaxation rate 73} | ; towards

the combined scattering relaxation rate 7} due to longitudinal phonons due to class IT events

alone in the absence of four-phonon processes for four different values of the phonon frequency
Wiax TEPYESENtS the maximum frequency of longitudinal phonon

Temperature. T. K % T3on, LI % Tiph, LI % T3ph LI % e Lol

P > for w = 1/4 wmax | for w = 1/2 Wpax for w = 3/4 wmax ‘ for w = wmax
1000 99.72 99.53 99.21 98.78
900 99.71 99.49 99.13 98.63
800 99.69 99.44 99.02 i 98.45
700 99.67 99.37 98.88 98.19
600 99.64 99.27 98.66 97.83
500 99.58 99.11 98.32 97.25
400 99.48 98.81 97.72 96.23
300 99.25 98.16 96.40 94.05
200 98.39 95.93 92.09 87.21
100 83.58 70.78 56.37 43.86
920 73.74 59.33 44,74 33.28
80 56.68 43.30 31.09 22.29
70 3245 24.48 17.37 12.34
60 11.15 9.00 6.81 5.08
50 4.04 3.30 2.52 1.90
40 4.10 2.26 1.29 0.81
30 1.94 0.60 0.28 0.16
20 0.40 0.10 0.05 0.03
10 0.24 0.06 0.03 0.02
8 0.21 0.05 0.02 0.01
8 0.19 0.04 0.02 0.01
4 0.15 0.03 0.01 0.01

2 0.11 0.03 0.01 0
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Results and discussion

We shall first discuss the expression proposed for 73, through Egs (15) and (16).
At low temperatures, the temperature exponents for transverse phonons, my (T),
and for longitudinal phonons, m; (T), reduce to 4 and 3, respectively, i.e. at low
temperatures my (T) — 4 and m; {(T) — 3. Through numerical analysis of K,
it has been found that at low temperatures the scattering relaxation rate due to
class I events dominates over the scattering relaxation rate due to class II events.
At the same time, due to the low value of temperature T, the factor e~**T s very
small. As a result, at low temperatures the expression proposed for . reduces
t0 Tyoh = Brn, i wT* for transverse phonons, and to 3., 1 = By wW?T*® for
longitudinal phonons, which are similar to the earlier findings of Herring [1]. At
the same time, they are similar to the expressions used by Joshi and Verma [11].

At high temperatures, the temperature exponents my (T), my (T) and m, (T
all tend to unity. It is well known that at high temperatures the scattering relaxa-
tion rate due to three-phonon U process dominates over the scattering relaxation
rate due to three-phonon N processes. Thus, the expression for 73, used in the
present analysis reduces to r;ljh,T = BwTe T for transverse phonons, and to
Tion L = B'w*Te™ T for longitudinal phonons. These expressions are similar to
the findings of Klemens. It is interesting to point out that, in the absence of three-
phonon N processes, the expression for 73, proposed in the present work reduces
to the expression used in the SDV model.

The values of the temperature exponents my (T), m; (T) and m (T) (as ob-
tained from Eqs (9) and (10) used in the present analysis are reported in Tables
5—7. Their continuous nature with temperature can be seen in Figs 1—3. With
the help of Tables 5—7 and Figs 1—3, it can be seen that at low temperatures
my (T) and m;_(T) tend to 4 and 3, respectively, which is the same as obtained
by Herring [1] at low temperatures. Tt can also be seen that at high temperatures
my, (T), my (T) and my 1(T) all tend to unity, which results in 73« 7, similar
to the earlier findings of Herring at high temperatures. It also results in Ko 1/7 at
high temperatures, which is similar to the previous findings. From these Figures,
1t is very clear that the value of m(T’) used in the present analysis lies between 1 and
4 for transverse phonons, and between 1 and 3 for longitudinal phonons, and it
does not exceed the upper Guthrie limit any temperature. Thus, it is free from
Guthrie’s comments [8] too. Therefore, one can say that the value of m(T) used
in the present analysis is more realistic than those used by previous workers.

With the help of Fig. 4, it can be seen that the agreement between the calculated
and experimental values of the lattice thermal conductivity is very good in the en-
tire temperature range 2— 1000 K, which tells that the expression proposed for
T3.n 10 the present analysis gives a very good response to the experimental data of
the lattice thermal conductivity at high as well as at low temperatures. The separate
percentage contributions due to transverse and longitudinal phonons can be studied
with the help of Fig. 5. From Figs 4 and 5 it can be concluded that at high tem-
peratures most of the heat is carried by the transverse phonons alone, which is in
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agreement with the findings of previous workers [6, 9—13]. It is also similar to the
findings of Hamilton and Parrott {42] and Srivastava [59, 60] based on the varia-
tional approach.

The separate contributions due to three-phonon N and U processes can be
studied via Figs 6—8. From these Figures it is clear that at low temperatures
T3pn, n dominates over T3, ¢ for both transverse and longitudinal phonons, and
also in both class I and class II events. This results in the dominating role of the
three-phonon N processes in the lattice thermal conductivity at low temperatures.
At high temperatures, the domination of 73, y over i, N can be seen from these
Figures; this shows that at high temperatures the lattice thermal resistivity is main-
ly due to the three-phonon U processes. These conclusions are in agreement with
the findings of the previous workers.

The percentage contribution of 735, towards the combined scattering relaxation
rate 77! in the absence of the four-phonon scattering relaxation rate 7, can be
seen in Tables 8—11. It is clear that at high temperatures 755, dominates over the
boundary and point-defect scattering relaxation rates, which has the result that at
high temperatures the lattice thermal resistivity is mainly due to the three-phonon
scattering relaxation rates. This is similar to the findings of Hamilton and Parrott
based on the variational techniques, and also to those of Dubey [13] based on the
relaxation time approach for Si. From Tables 10 and 11 it is obvious that 5, ¢
(class IT events) is much larger than 73,  (class I events) at high temperatures,
which is similar to the results obtained by Verma ef al. [9, 10]. From these two
Tables it can also be seen that T3, 1 (class I events) is Jarger than 3,y ¢ (class 11

events) at low temperatures.
£

The author wishes to express his thanks to Dr. R. A. Rashid, Dr. R. H. Misho and Dr. G. S.
Verma for their interests in the present work.

References

1. C. HERRING, Phys. Rev., 95 (1964) 954
2. P. G. KLEMENs, Solid State Physics (ed. F. Seitz and D. Turnbull, Academic Press, Inc.
New York) 7 (1958) 1

3. P. G. KLEMENS, Proc. Roy. Soc., London, A208 (1951) 108

4. P. G. KLEMENS, Proc. Roy. Soc., London 68 (1955) 1113

5. J. CALLAWAY, Phys. Rev., 113 (1959) 1046

6. M. G. HOLLAND, Phys. Rev., 132 (1963) 2461

7. G. L. GUTHRIE, Phys. Rev., 152 (1966) 801

8..G. L. GuTHRIE, Phys. Rev., B3 (1971) 3373

9. P. C. SuarMA, K. S. DuBey and G. S. VERMA, Phys. Rev., B4 (1971) 1306
10. K. S. DuBgy and G. S. VErMA, Phys. Rev., B4 (1971) 4491
11. Y. P. Josai and G. S. VERMA, Phys. Rev., B1 (1970) 750

12. K. S. Dugey and R. H. MisHo, J. Thermal Anal., 12 (1977) 223
13. K. S. DUBEY, Ind. Jour. Pure Appl. Phys., 15 (1977) 455
14. B. K. AgrawaAL and G. S. VERMA, Phys. Rev., 126 (1962) 24
15. B. K. AGRAWAL and G. S. VErMA, Physica, 28 (1962) 599

J. Thermal Anal. 19, 1980



16.
17.
18.
19.
20.

22.
23.
24.]
25.
26.
27.
28.
29.

31.
32.
33,
34.
35.
36.
37.
38.
39.
40.
41.
. R. A. H. HAMILTON and J. E. PARROTT, Phys. Rev., 178 (1969) 1284
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.
53.

54.
55.
56.
57.
58.
59.

ERRRSPROOZE

DUBEY: ANALYSIS OF LATTICE THERMAL CONDUCTIVITY 287

. Toxen, Phys. Rev., 122 (1961) 450
. HoLLAND, Phys. Rev 134 (1964) 471
. BHANDARI and G. S. VERMA Phys. Rev., 138 (1965) 288
. BHANDARI and G. S. VErMA, Phys. Rev., 140 (1965) 2101
. JosHi, M. D. Ttwart and G. S. VERMA, Phys. Rev., B1 (1970) 642
UMAR, and G. S. VErRMA, Phys. Rev., B2 (1970) 488
. KASAREV, P. V. TAMARIN and S. S. SHALYAT, Phys. Stat. Solidi, (b)44 (1971) 525
. DuUBEY, J. Thermal Anal., 14 (1978) 213
. DUBEY and G. S. VERMA, Phys. Rev., B7 (1973) 2879
. DUBEY, Phys. Rev., B13 (1976) 1636
J MARTIN, J. Phys. Chem Solids, 33 (1972) 1139
Al-Epani and K. S. Dusgy, Phys. Stat. Solidi, (b)86 (1978) 741
AL-Epant and K. S. DUBEY, Phys. Stat. Solidi, (b)87 (1978) K47
TIWARI D. N. TALWAR and B. K. AGRAWAL, Sol. Stat. Comms., 9 (1971) 995
J. MARTIN and G. C. DANIELSON, Phys. Rev., 166 (1968) 879
. Misno and K. S. DUBEY, Ind. J. Pure Appl. Phys., 15 (1977) 48
. Misso and K. S. DuBty, Ind. J. Phys., 52A (1977) 234
OOD M. P. SinGgH and G. S. VERMA, Phys. Rev., B3 (1971) 385
UBEY, Phys. Rev., B7 (1973) 2876
Dusey, Ind. J. Pure Appl. Phys., 13 (1975) 351
I POMERANCHUK Phys. Rev., 60 (1941) 820
1. POMERANCHUK, J. Phys., USSR, 4 (1941) 259
I. PoMERANCHUK, J. Phys., USSR, 7 (1942) 197
H. B. G. Casimir, Physica, 5 (1938) 595
R. BERMAN, E. F. SimoN and J. M. ZmmaN, Proc. Roy. Soc., London, A220 (1953) 171
R. BerMaAN, E. L. ForesTER and J. M. ZiMaN, Proc. Roy. Soc., London, A231 (1955) 130

UOO wwm<7<:"vgzmg

?ﬁ'ﬂ%‘?’w.“‘ggg

UJV’O:I

J. CaLLAWAY and H. C. BAEVER, Phys. Rev., 120 (1960) 1149
K. S. DuBEY and G. S. VErRMA, Proc. Phys. Soc., Japan, 32 (1972) 1202
P. JosHi, M. D. Tiwari and G. S. VErMA, Physica, 47 (1970) 213
. S. DuBEy, Ind. I. Pure Appl. Phys., 11 (1973) 265

M. SamuarL, R. H. Misuo and K. S. Dusky, Current Sci., 46 (1977) 220
S. Dugey, Phys. Stat. Solidi, (b)81 (1977) K83

K. AgrAwaL and G. S. VErMaA, Phys. Rev., 128 (1962) 603

S. DuBEy, J. Phys. Chem. Solids, 39 (1978) 699

S. Dusty, Sol. Stat. Comms., 23 (1977) 963

S. DuBEY, J. Phys., 37 (1976) 265

S. Dusgey, Phys. Stat. Solidi, (b)79 (1977) K119
. E. PARROTT, Phys. Stat. SOlldl (b)48 (1971) K159

. S. Dusry, Phys. Stat. Solidi, (b)63 (1974) K35

. C. SHARMA, K. S. DuBey and G. S. VErMA, Phys. Rev., B3 (1971) 1985
. N. BroockHoUse and P. K. IYENGAR, Phys. Rev., 111 (1958) 747

. D. Tiwarr and B. K. AGrawAL, Phys. Rev., B4 (197]) 3527

. P. SRiwasTavA, Pramana, 7 (1976)

. P. SriwasTAva, Phil. Mag., 34 (1976) 795

oozwvxuwznzwzwxx

RESUME — On a analysé, dans le cadre de la classification de Guthrie des phénoménes de dif-
fusion phonon-phonon en deux classes, I et I1, les vitesses de relaxation de la diffusion a 3 pho-
nons et 'on propose pour la premiére fois, comme résultat de ce travail, une nouvelle expres-
sion:

Tin = (Bn,g + Bu,e “*Dgn)T™I® + (By, e~ **Tg(w)T™ID

J. Thermal Anal. 19, 1980



288 DUBEY: ANALYSIS OF LATTICE THERMAL CONDUCTIVITY

pour les vitesses de relaxation de la diffusion & trois phonons, permettant de calculer la con-
ductivité thermique du réseau d’un prélévement. En se servant de ’expression proposée ci-
dessus, on a analysé la conductivité thermique du réseau de Ge dans lintervalle de températu-
res allant de 2 4 1000K et le résultat obtenu montre un trés bon accord avec les données expé-
rimentales. On décrit de méme le pourcentage des contributions dues aux processus normaux
et inversés 2 trois phonons. Le role de processus 4 quatre phonons est aussi inclus aux tem-
pératures élevées. Afin d’estimer une valeur approchée de la force diffusante et de la conductivité
du phonon, ’expression analytique peut aussi étre obtenue dans le cadre de I’expression pro-
posée ci-dessus pour T3}

ZUSAMMENFASSUNG — Die Drei-Phonon-Streuungsrelaxationsgeschwindigkeiten und ihre
Temperaturexponenten wurden, im Rahmen von Guthries Klassifizierung der Phonon-Pho-
non-Streuungsergebnisse als solche der Klasse I und Klasse II, analysiert und als Ergebnis
dieser Arbeit wurde zum ersten Mal ein neuer Ausdruck

Tk = (Bn1 + Buie """ Dgw)T™I® + (Byu + Bune —RTyg(w) TP

fir die Drei-Phonon-Streuungsrelaxationsgeschwindigkeiten vorgeschlagen um die Gitter-
Wirmeleitfihigkeit einer Probe zu berechnen. Unter Anwendung des oben vorgeschlagenen
Ausdrucks wurde die Gitter-Wérmeleitfihigkeit von Ge im Temperaturbereich von 2 bis
1000K analysiert und das erhaltene Ergebnis zeigt eine sehr gute Ubereinstimmung mit den
Versuchsangaben. Die den Drei-Phonon Normal- und Umklapp-Prozessen zuzuschreibenden
prozentualen Beitrige werden ebenfalls mitgeteilt. Die Rolle der Vier-Phonon-Vorginge ist
bei hohen Temperaturen ebenfalls mit inbegriffen. Um einen annghernden Wert der Streu-
ungsstdrke und der Phonon-Leitfihigkeit zu schitzen, wird der analytische Ausdruck auch
1m Rahmen des fiir 75;} oben vorgeschlagenen Ausdrucks erhalten.

Pesrome — UM3yyena penakcaudoHHas CKOPOCTh TPeX(QOHOHOBOTO PAacCesHUsl K ee TeMIepaTyp-
Has JKCIIOHEHTa B paMKax BhIpaXkeHwWs1, npeaioxennoro I'yrpee. Cnyyan ¢oHOH-DOHOHOBOTO
paccessHUA pa3felieHbl Ha IBa Kiiacca: coObiTha 1 kitacca, B KOTOPBIX HOCHTENb OHOHA aHHWUTH-
JIMpoBaH koMOuHAarueit, u coburtusa 1l KIacca — rae HocuTenb (GOHOHA AHHUTUIHPOBAH pac-
IenicHreM. B pe3yssTaTe 3TOr0 NPENIONKEHO HOBOE BHIPAXKEHUE

Tiom = (Ba.1 + Bu1e” "D gw)T™IP + (Byu + Bu,ne *HgmyT™ o

UTA CKOPOCTH peNnakcanuu TPeX(pOHOBHOBOTO PACCESHUS C LENBIO BHIYUCICHUS DEIICTOYHON
TEWIONPOBOOHOCTH oOpasua. TemmepaTtyprHas skcrioHeHta m(7) Obuia m3ydveHa aas ob6omx
K1maccoB coOwiTuil. B KauecTBe mpuMepa OBlTa MPOAaHAIM3HPOBAHA PEINETOYHAS TEIIOIPOBOI-
HOCTb repmManus B obmactu temmepatyp 2—1000 K. ITomityeHHBIE pe3yabTATEL XOPOINO COB-
mAJANM C 9KCHEePUMEHTATBHBIMA JaHHBIMHU. IIpu BEICOKHX TeMueparypax ObUIa MPHHATA BO
BHEMaHHE POJIb YETHIPEXOHOHOBEIX IPOIECccoB. I YCTAHOBIICHHS TPUOIMKEHHOTO 3HAYEHU
CHNBI paccesuns ¥ GOHOHHOM NPOBOIUMOCTH, OBLUIO YOIYYEHO aHATHUTHISCKOS BHIPAKCHHE Ha
OCHOBE BEIPQXXEHHS, IPEJIOKEHHOTO IS r§$og.
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